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SUMMARY 


The Shannon-Fano-Huffman Redundancy Reduction Procedure is extended to one-
parameter and two-parameter Poisson distribution resulting from run-length informa
tion streams. Figures-of-merit are established to compare Huffman coding to fixed
word-length binary coding on the basis of (1)average number of coding digits per 
message, (2) signal-to-noise ratio in analog-to-digital conversion due to bit e r ro r s ,  
and (3) design criteria primarily of interest to the system designer and not readily 
amenable to quantitative analysis. To ascertain whether or  not Huffman coding leads 
to a unique and optimum code, other equally good optimum solutions were obtained. 
Optimization and uniqueness criteria are examined and applications to data compres
sion are discussed. 

INTRODUCTION 

The need for data compression o r  "compaction" is particularly acute when statisti
cal information from deep space probes is transmitted. A series of important recent 
investigations (ref. 1)examined criteria for transmitting a small  number of sample 
quantile, often referred to as percentage points, instead of all sample values. An 
alternative approach is proposed. The approach here presented has several  disadvantages 
compared to the quantile system, specifically: 

1. 	 The code has variable length, with the inherent changes of e r r o r s  in trans
mission wrecking the frame. 

2. 	 The code assumes I r a  priori" information on the statistical distribution, 
an assumption which is frequently not justified in practice. 

3. The proposed approach has not been justified experimentally. 

Despite these shortcomings, there are some significant similarities in the objectives, 
as well as in the statistically oriented features of these two investigations. For 
practical applications, the method described herein does not presently warrant 
comparison with that reported earlier, but should be regarded rather as a potential 
stepping stone for future investigations. 



REVIEW O F  PREVIOUS WORK 

Huffman (refs. 2 and 3) defines a Minimum Redundancy Code as an ensemble o r  
alphabet consisting of N members o r  letters with the following properties: 

1. 	 Each letter has a preassigned probability of occurrence P(i)  where i = 1, 
2, 3, ... N subject to normalization condition S(i = 0, N) P(i) = 1, where 
the summation S(i = 0, N , )  sums i from 1to N. 

2. 	 Each letter is to consist of a number o r  length of coding digits L(i), which 
are usually, but not necessarily, binary. The average message length 
D = S(i = 0, N) P(i) L(i) is to be a minimum. 

3.  	 Subject to the normalization condition (1)and the minimization constraint (2) 
above, coding digits are to be assigned to generate N distinguishable letters, 
such that addition (or subtraction) of a digit from the end of a letter does not 
generate a new letter of the alphabet. 

The Huffman procedure of constructing Minimum Redundancy Codes, i s  shown i n  
part (a) of Table I for an  alphabet with N 25 and assigned values of P(i). A figure
of-merit is D = 4.24, the sum of P(i)  L(i), that is, the average word length to assess the 
saving obtained by Huffman coding. This value must be compared Tvith D =- 5, for a 
25 5 zD letter conventional alphabet. 

STATISTICAL PROPERTIES O F  RUN-LENGTHS 

A run of variable length r is defined if no event occurs during interval 1, 2, 3 ,  ... 
r - 1 followed by an event during interval r. Redundancy reduction uses  information 
contained in the assumed o r  implied probability of occurrence of run of length r. The 
Poisson distribution describes a wide range of physical phenomena and Operations 
Research models. The simplest model is based on a single parameter, namely m E(r) ,  
the mean occurrence o r  expected value of the run. It is assumed that r is always a non
negative integer, but m may o r  may not be an integer. The probability that exactly 
r events occur per  run i s  denoted by 

r - m  
p(r ,m) = m e / r  ! 

Assuming an expected value of run m = 0 . 5  and m = 3, representative values for p(r ,  m) 
are listed in Table 11. In evaluating experimental data, it i s  useful to obtain p(r,  m)  
experimentally and to calculate m using the following properties of the distribution: 
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TABLE I. 
MINIMUM REDUNDANCY CODE 

Input Data (a) Minimum Code @) Quasi-Minimum Code 

i 
p(i)

% 8 7 6 5 4 3 2 1  D Code L(i N(i)W (i) P(i)L(i) Code 

E 13 N\ .39 111 
4 4 .52 

1111 

T 10 Z”\N .30
I 

110 
4 4 .40 

1110 

A 7 .28 1011 1101 
I .28 1010 1100 
0 .28 1001 1011 
N Z .28 1000 1010 
R N\ .28 0111 1001 
S zm\ 

P \ Z  
.28 0110 

4 24 1.68 
1000 

H 4 .16 0101 0111 
4 4 .16 

C 3 .15 01001 01101 
D .15 01000 01100 
F .15 00111 01010 
L .15 00110 01010 
M .15 00101 01001 
U .15 00100 01000 

5 12 .90 
B 2 .10 00011 00111 
G .12 000101 00110 
P .12 000100 00101 
w .12 000011 00100 
Y .12  000010 00011 

> 10 .50 
K . 5  .035 000001 1 000101 
J ,035 000001c 000100 
Q 
V 

.04 0000011 

.04 oooooia 
000011 
000010 

X .04 0000001 000001 
Z . 0 4  000000( 000000 

6 6 .18 
-

3 




TABLE 11 
PROBABILITY p(r,  m) FOR RUNS OF LENGTH r AND 

EXPECTED VALUE m 

Binary Huffman p ( r , l  3) d (r,0.5) P(r9 3) 
. - ._ . . ~-

000 0 . 6 0  . 6 0  .05 . 0 5  
001 10  . 3 0  . 60  .15 . 3 0  
010 110 .075 .22 . 2 2  . 6 6  
011 1110 .012 .05  .22 .88 
100 11110 .002  .01 .16 .80 
101 111110 .0002 .002  .09 .54  
110 1111110 .00002 .0002 .06 .42 
111 11111110 .000001 .00001 . 0 3  .24  

~ _.~ ... - - _  

1. 	 A maximum of p ( r , m )  occurs for r = m*, where m* is an integer equal to 
o r  next below m. If m is an integer, p(m, m) = p(m - 1,  m). 

2. The standard deviation S(r)  = m 1/2 . 

3. The mean deviation is D(r)  = 2m p(m*, m). 

Since p(m*, m) is frequently substantially greater  than other values of p(r,  m), it is 
often convenient to measure m by computing D(r)  ra ther  than S(r). 

TRUNCATED RUN- LENGTH DISTRIBUTIONS 

A Poisson distribution can be filtered or  truncated at either end of the probability 
frequency spectrum, if runs below a given length or above a given length are eliminated. 
For example; the two-parameter probability density distribution 

p(r ,  m, n) = 0 if O>r>n 

= p(r ,  m) / G(n, m) if n g  r 

is defined by supressing all runs of length less than n. The normalization function 

G(n, m) = S(r = n, 00 ) p(r ,  m) = S(m = 0, n) p(n, m-1), 
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that is 

r=w 

G(n, m') =x p ( r ,  m') = j t  p(n, m'- 1) dm '  , 
r=n 

where  m' = E ( r )  is the expec ted  value after t runca t ion  a n d  G(n, m) 
is the incomplete Gamma Function tabulated by Pearson (ref. 4),or  is obtainable from 
tables of p(r ,  m) computed by Molina (ref. 5). 

Experimentally, the characteristic values of this two-parameter distribution are 
obtained from 

E ( r )  = m + n, the expected value; 

S (r)= m1/2, the standard deviation; and 

D(r)  = 2 mp (m*, m), the mean deviation. 


The expected value is increased, since low values of r are omitted, while S(r) and D(r)  
are not affected by m and thus are well suited to numerical evaluation. The same 
approach is used for truncation of high values, or for band-pass and band-stop truncations. 

HUFFMAN CODING OF POISSON DISTRIBUTED RUN-LENGTHS 

3
An ensemble with 2 permissible run-lengths is assumed in Table 11, and a 

possible Huffman code is assigned to each run. The probability density p(r ,  m) is 
computed assuming a Poisson distribution with m = 0.5 and m = 3.  The weighted run-
length d(r,  m) = rp ( r ,  m) is tabulated to compute the mean word length D(m) = S(r = 0,m) 
d(r ,  m). Within the accuracy of the calculations D(m) = m + 1. This is a significant 
result in several respects: 

1. The average information content is m for the message itself. 

2. 	 Shannon (ref. 6 )  showed that the average number of binary digits required 
for coding a message exceed the information content (binary measured) by 
a value which reflects the redundancy inherent in the coding scheme. 

3. 	 The average word length of Huffman-code Poisson-distributed run-length 
exceeds its information content by unity, independent of average message 
length. 

4. 	 The excess of average word length over average information content is not due 
to redundancy, but corresponds to unity information content per message, sig
naling the termination of a message. 
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5. 	 The alphabet or  message ensemble has an arbitrari ly large number of 
messages, with each message being uniquely coded. Further, no coding 
sequence exists without a corresponding meaningful message. The ensemble 
is unique and non-redundant. 

6. 	 The combined information content, m + 1,-consists of the message m 
augmented by a bit signaling the end of each message and equals the 
average word length. This accounts for the average word length providing 
conformation of the conclusion arrived at independently in (5) above that 
the code is unique and non-redundant. 

In the example shown in Table II, a k-digit (k = 3) binary alphabet is compared with 
a run of length m as the expected value. Data compaction can be defined as the ratio 
of average word length binary D(k) to average word length coded D(m). For binary to 
Huffman coded run-length: 

D(k) / D(m) = k / (m + 1) 

In Table I1 for  m = 0.5,  then D(k) / D(m) = 2; and for m = 3.0,  then D(k) / D(m) = 0. 75 

This shows that, for example, a five-fold compaction is feasible if k = 8 and m = 0.6.  

ADEQUACY OF MATHEMATICAL MODEL 

Confidence in the above results wanes as soon as the tenuous nature of the assump
tion is examined, upon which the mathematical model was  formulated. Poisson distribu
tion subjected to statistical analysis is based on several distinct models originating 
from a random arrival of a time sequence of events: 

1. 	 Given an average rate of occurrence, say m events per unit time, a uniform 
probability density m dt is assumed for event r ,  given the probability 
p(r - 1, m). This yields the probability of obtaining a specified number of 
r events as a function of a variable time interval. 

2. 	 Given a fixed time interval in which an average of m events occurs, the 
stochastic variable r is the probable number of events likely to occur. 

3. 	 Both types of distribution can be modified by a non-zero, but constant, pulse 
duration during which no other event is acceptable to the counting mechanism. 

For the run-length of primary interest in practical communication systems, a 
randomly arriving sequence of events is sampled at quantized time intervals. As 
the sampling period becomes small compared to mean occurrence of events, the above 
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'models become valid. Unfortunately, in the region of interest this condition is not 
satisfied. A sampled data output from a Poisson-distributed input can be obtained 
by z-transformation of the moment-generating function characterizing a Poisson 
distribution. 

To the knowledge of the author, investigations on sampled data o r  on statistical 
properties of runs have not attacked this problem. A solution to the problem is of con
siderable practical interest and well within reach of presently available transform 
methods, from the vantage point of sampled data technique as well as from that of 
stochastic processes. It is questionable, however, if an investigation of this proce
dure will effectively serve to ascertain the adequacy of a mathematical model, unless 
the sensitivity of Huffman coding to deviations from ideal distributions is better 
under stood. 

Assuming that Huffman coding is highly sensitive to changes in  the model, 
second-order approximations in formulating o r  modifying the model are warranted. 
Fortunately, it appears that even a rough approximation of the statistical model may 
be justified, since only minor changes in compaction ratio can be expected even by 
significantly deviating from optimum coding procedures. 

In par t  (b) of Table I, a deviation from an optimum procedure is undertaken by 
grouping the letter of the alphabet. An additional restriction to Huffman coding is 
then imposed that each group defined by its probability must have the same run-length. 
A comparison from Table I is instructive: 

Minimum- Code- Non-Minimum 

Average Word Length D = 4 . 2 4  D = 4 . 3 6  

Range of Runs 3, 4,  5, 6, 7, 8 47 5, 6 

Compaction Ratio 1.18 1.15 

The insignificant difference in compaction ratio provides evidence that: 

1. A quasi-minimum code does not deviate significantly from an optimum code. 

2. 	 Constraints were imposed on a simple model without changing significantly 
established figures-of-merit. 

3. 	 Other figures-of-merits, such as requirements on grouping or range of 
values, can provide useful information. 
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A similar approach can be taken to introduce desired changes in the Poisson distribution, 
for  example, truncation, to explore variations in average word length. 

TRADE-OFF AND OPTIMIZATION PROCEDURES 

The feasibility of using models which contain additional constraints was explored 
by examining codes which differ from the Minimum Redundancy Code by an amount 
negligible in practice, but which exhibit useful properties not necessarily available 
from minimum codes. These codes will be termed "quasi-minimum" codes. Several 
questions arise regarding trade-off criteria and procedure, and properties of these 
codes enhancing their utilization. 

__- - =-1. 	 Is it a "minimum"-code? It is difficult to  ascertain if the code derived by the 
Huffman technique is in fact  a minimum. While no proof is as yet available, 
it appears plausible that Huffman's procedure, as well a s  the trade-off pro
cedure to be developed in Table 111, leads to a Minimum Redundancy Code. 

2. 	 Is there a unique code? Comparison of the codes in part  (a) of Table I and 
part  (3) of5able  111shows that there are several  codes which satisfy criteria 
defined by Huffman as an optimum code. To obtain one optimum code from 
another, it is necessary to employ successive application of the trade-off 
procedure given below. 

3. 	 What properties do minimum or q e i - m j n i m u m  cod_es exhibit? Specifically, 
can features such as e r r o r  detecting cr i ter ia  or parity checks be incorporated 
into Minimum Redundancy Codes. Some statistical properties of these codes 
will be examined. 

The quasi-minimum code developed in part (b) of Table I is summarized in part  (a) 
of Table III. The number of letters in each group is denoted by N(i), and the corres
ponding probabilities listed under P(i) a r e  the same as given in Table I. 

A Minimum Redundancy Code or  other optimum performance can then be obtained 
by: 

1. Establishing a quasi-minimum code. 

2. Establishing a trade-off procedure. 

3. Repeating trade-off until an optimum is reached. 
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TABLE III 

OPTIMIZATION PROCEDURE 


~-

Input Data (a) Quasi- Minimum Code (b) Minimum Code 

P(i) W(i)  N(i)W(i) P(i)L(i)N(i) N(i)W(i) P(i)L(i)N(i) 
% 
13 4 4 .52 16 .39 

10 4 4 .40 16 .30 

7 4 24 1 . 6 8  48 1 . 6 8  

4 4 4 . 1 6  8 . 1 6  

3 2 12 .90 24 .90 

2 2 10 .50 1 0  . 6 0  

. 5  1 6 . 1 8  6 . 21  

64 4. 36 128 4.24 

To establish a quasi-minimum code, proceed as in part  (a) of Table I16 

1. Assume values for  L(i), length of word for  each category. 

2. 	 Assign a weight W(i) to  L(i), such that two successive levels differ by 
a factor of 2. 

3. 	 Compute P(i) L(i) N(i)  subject to  the normalization constraint 
N(i)  W(i)22L(M), where L(M) is the maximum value of L(i). 

To establish a trade-off, proceed from part (a) of Table I11 to part  (b) of Table I11 
as follows: 

1. 	 Establish values for W(i) as before, and change L(i) by one unit subject to  
the normalization condition N(i) W(i) 22L(M). 

2. 	 For every change in L(i), ascertain that the contribution to  P(i) L(i) N(i) 
is negative before implementing it. 

3. Repeat with (1) and (2) until an optimum is reached. 
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! Rather than the derivation of any one optimum coding scheme, the significant 
conclusions to  be drawn from Table ID are: 

1. The lack of sensitivity of average word length for near optimum codes; 

2. 	 The availability of step-wise optimization-and tests for sensitivity for 
step-wise changes; 

3. 	 The existence of more than one code satisfying Huffman's cr i ter ia  for  
uniqueness. 

Quasi-optimum codes will be examined in the subsequent sections in view of their 
applicability to  practical problems. 

CODING FROM ASSUMED PROBABILITY SPECTRA 

Any redundancy elimination scheme is based on utilization of information contained 
in the probability spectrum. Therefore, any figure-of-merit is only meaningful in t e rms  
of known o r  assumed data. To illustrate this, examine the alphabet based on the 
following probability spectra: 

1. 	 If all letters have the same probability, the Huffman coding procedure 
yields a binary code of uniform length, o r  letters at most differing by 
one digit. 

2. 	 If successive letters in an alphabet differ in probability by a constant ratio 
of r = 2, all letters differ by one digit in length and the mean length of the 
alphabet is r2(r-l)-2. 

3.  	 If all letters of an alphabet differ in probability by a constant ratio rk = 2, 
any k letters will have the same number of digits. 

The Poisson-distribution coded by the Huffman procedure yield several codes: 

1. 	 If the mean m does not exceed unity greatly, all letters differ by one 
digit; this arrangement will be termed Poisson-coding. 

2. 	 If the mean is m>>l ,then two regions should be distinguished: inside and 
outside the band m -+-. 

3. 	 In the region outside the band, Poisson coding gives an optimum scheme; in 
the inside region, Poisson coding is not desirable. 
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4. 	 An optimum can be derived for the region outside the band by the optimization 
procedures discussed above. Alternately, a n  estimate of the average letter 
length can be obtained from ratios of successive probabilities. 

5. 	 For m = 1, the Poisson distribution approaches the normal distribution. By
selecting a suitable coordinate system, the normal distribution has a mean of 
zero and a deviation of unity. Therefore, the sampling rate determines the 
deviation from the mean. 

6. 	 Assumptions made for the Poisson distribution do not necessarily apply to  
coding of normally distributed data. Specifically, caution is needed to ascertain 
the underlying assumptions to  normally distributed data, before coding it by 
schemes developed for Poisson distributions. 

Poisson-codes as defined above have distinct properties which can be exploited in  
several  ways, namely, with respect to: 

1. Subframe syncs; 

2. Parity-type checks; 

3. Error  detecting schemes. 

These will now be examined. 

PROPERTIES OF POISSON-CODES 

A ser ies  of interesting codes can be defined to describe runs with a known distribu
tion spectrum. These codes differ from codes described by Huffman in several 
aspects, shown in Table IV

1. The number of le t ters  of the alphabet need not be finite. 

2. 	 Each code contains a zero at a fixed distance from one end, which is a 
Tlsync''t o  each subframe. 

3. Each letter has a different length. 

Various combinations of Binary and Poisson codes are possible, as shown in the 
example in Table IV under Poisson 2 and Poisson 4, each consisting of three parts: 

1. A zero for sync; 

2. A binary part ,  consisting of the binary number modulus 2N; 
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TABLE IV 
POISSON CODES 

.
~ 

Decimal Binary Poisson # 1 Poisson # 2 Poisson # 4 
-. -- - . 

0 0000 0 00 000 
1 0001 10  01 001 
2 0010 110 100 010 
3 0011 1110 101 011 
4 0100 11110 1100 1000 
5 0101 111110 1101 1001 
6 0110 1111110 1100 1010 
7 0111 11111110 1101 1011 
8 1000 111111110 11100 11000 
9 1001 1111111110 11101 11001 

~- - - .  -. . .- -~ -.-

3. A run of ones consisting of a Poisson code. 

For the examples cited, the mean length for a Poisson distribution with 
m = 1 are: 

Poisson # 1 L(P1) = 2.0  
Poisson # 2 L(P2) = 2.9 
Poisson # 4 L(P4) = 3 . 7  
Binary L(b) = 4 . 0  

The distributions Poisson #2 and Poisson #4 differ from Poisson #1in several 
respects. Specifically, they: 

1. 	 Do not conform to the cri teria established by Huffman for an optimum 
code. 

2. Correspond to no known distribution of data streams. 

3. 	 Do not satisfy the condition for quasi-minimum redundancy codes previously 
defined. 

4. 	 Contain ambiguity for "syncing" of subframe, since a sequence cannot be 
unequivocally recognized subsequent to a signal out of 7'syncII. 

It is not the purpose of these examples to derive optimum schemes, such as the 
coding scheme Poisson 1 in Table IV. Rather, the aim is to show that it is possible 
to define rational and valid cri teria to compare coding schemes. 
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Further advantages of Poisson codes are: 

1. 	 The ratio of the number of zeros to  the number of ones has an ascertainable 
expected value and an ascertainable standard deviation. Thus, two measure
ments a r e  available for  checks not too dissimilar in scope to parity checks. 

2. 	 A truncated Poisson-code gives in turn another Poisson code. Assume for 
example that no data involving 0, 1and 2 are  desired. Reducing all run-
lengths by two and omitting 0 ,1 ,2  will again result in a Poisson distribution. 

3. 	 An e r r o r  in ffsyncf 'or a bit e r r o r  affects one or, at the most, two letters, 
and is comparable t o  e r r o r s  in binary coding (ref. 7). Quantization e r r o r s  
a r e  also comparable to those in binary coding. 

The important aspect of the Poisson-code is its regularity and simplicity of 
structure. If applied to appropriate probability spectra, it provides not only significant 
compaction but also reliability features worth exploiting. 

FIGURE -0F-MERIT: SIGNAL-TO-NOISE RATIO 

In binary coding, the probability of a bit e r ro r  (p) limits the signal-to-noise ratio 
for a long message: 

-1
R ( K = m ) = p  . 

For a K-bit message 

-2K -1R(K) = p-' (1-2 ) 
Thus, 

R ( l ) =  (4/3)p-' 

The signal-to-noise ratio G J e  to quantization (ref. 7) in binary coding is 

Q(K) = 6(K+l) db. 

In Huffman coding the signal-to-noise ratio R is similarly limited by 

-1
P 5 R(K) 5 (4/3)p-l 

The quantization noise will be equal to the uncertainty in the run-length. For 
the Poisson distribution, the uncertainty is heavily weighted in favor of the more 
probable and shorter runs. The shortest runs are low accuracy measurements 
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with an uncertainty of the order of 1/2 o r  6 db for all measurements. The second 
moment of the Poisson distribution serves  to calculate fluctuations in the run-length 
as S(r = 0, 03) p(r) (m-r)2 = m. The signal-to-noise level thus is m. Since the 
average run length K = m + 1, then: 

Q(K) = 6dKb--r db 

For example, m = 1/2 yields K = 1.5 and Q(K) = 4 db. Figure-of-merit for signal-to
noise compared to  quantization is: 

Binary coding is far less sensitive to  quantization e r ro r s ,  since all bits are 
weighted equally and only one bit is affected. In Poisson-coding, the shortest word 
fluctuates most and is most heavily weighted. Typically, assuming word lengths 
of 2. 0 fo r  both distributions, the signal-to-noise ratio is 30 percent better with 
binary coding. 

FIGURES-OF-MERIT: AVERAGE WORD LENGTH 

The average word length in a Poisson code is determined by the mean m of 
frequency distribution and is 

L(P) = m + 1 

The average word length for binary coding depends only on the desired accuracy and 
is 

L(B) = -Ln A. 

For example, an accuracy of one part  per  thousand yields 

A = 10
- 3  

and L(B) = 10. 

For smaller values of m, the less deterministic are the data. In fact, if m < 1, 
then the standard deviation will exceed the mean. Poisson-coding is based upon, 
and exploits, the information contained in the statistical properties of data. This 
type of coding is therefore most effective when wide fluctuations in the data a re  
anticipated, and data are needed with high accuracy. On the other hand, binary coding 
requires equal effort fo r  highly probable as  well as for rare events. Therefore, binary 
coding is advantageous for  data streams of nearly equally probable events at uniform 
and low accuracy. 
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Consider the compaction ratio L(B) / L(P) for  four cases: 

m = 1/2 m = 1 0  

A = 10-6 
6.7 0.9 

A = 5% 2.0 0.3 

In summary, in binary coding, one pays for the highest accuracy with which the 
least probable data a re  given. In Poisson-coding, accurate data costs little, provided 
the need for accuracy occurs infrequently, and provided the coding is matched to the 
anticipated probability distribution. 

APPLICATIONS TO MODULAR ARITHMETIC 

A spectacular example of compaction resultant f rom variable-length codes can 
be found in coding the alphabet of modular arithmetic. An example is listed in Table 
V. 	 Modular arithmetic has recently received attention in the Western technical 
literature, in view of emphasis given to  the subject by computer designers in  the 
Soviet literature. 

In modular arithmetic, a number is written as a succession of remainders of 
modulus N(i), the jth prime number. For example, 

(4 ,2 ,1)  (modular) = 4(base 5) *2(base 3) *l(base 2) 

= (29) (decimal notation). 

Similarly 

(6 ,4 ,2 ,1)  (modular) = 209 (decimal) 

and 

(10, 6, 4,2, 0) (modular) = 2309 (decimal). 

In Table V, the letter of the alphabet N(i)  with associate probabilities P(i) 
is listed. From these input data, a quasi-minimum code is then obtained by 
computing L(i) and W(i) by the techniques developed for Table I. 

The expected word length is calculated in Table VI assuming: 

1. A uniform distribution of input data; 

2. A Poisson distribution. 
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- - - - _ 

TABLE V 

REDUNDANCY COMPARISON FOR MODULAR ARITHMETIC 


. - _ -

N(i) P(i) W(i) W(i)N(i) 

2 50 16 32 

3 .33 8 24 

5 .20  4 20 

7 .14 2 14 

11 .09  1 11 

13 .07 . 5  8 


17 0. 6 . 25  4 


19 0.5 .13 2 


2 1  0.5 .06 1 


23 0 .4  . 0 3  1 

~~ ..

. - .  

P(i)L(i)N(i) 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12  

.. .. 

K(i) 

. 60  1 . 8  

. 3 0  1 . 2  

.08 0.4 

.02 0.2 

.01 0.1 

TABLE VI 

DATA COMPACTION FOR ALPHABET CODED FROM MODULAR ARITHMETIC 

- - - - - - __ __ - ~ . 

Equivalent I Average Word Length 
- .  ~ ___ -.-_I 

Range 	 Digits I -Range Poisson Binary _ _  _ _ _  

4,291 3 29 2 12  4 5 


6,4,2 , 1  4 209 3 18  4 8 


10,6,4, 2 , l  5 2309 4 4 12  


10 1o1O 11 4 33 

...
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As before, the\expected word length L(B) for  binary coding is a function of the 
desired accuracy, n'amely L(B) = InA. In Table VI, for A = 209 or . 5 %  resolution, 
L(B) = 8. However, for  Poisson coding the average word length L(P) is a function 
of the mean of Poisson distribution m. 

Table VI compares typical cases. For example, A = 209 (decimal) = 6421 
(modular) binary coding requires In 209 or 8-digit coding. By the Huffman procedure 
given in Table V, the average path length is 3 + 4 + 5 + 6 = 18 using a uniform 
probability distribution. Using a Poisson distribution of mean m = 1gives an 
average word length of L(P) = 4 as shown in Table V. The resultant compaction 
is L(B)/L(P) = 2.0. 

A Poisson code for the modular alphabet combines features of both the high 
resolution of binary coding with the compaction inherent in Poisson coding. The 
compromise is based on the distribution of prime numbers, which is a compromise 
wile between linear presentation and logarithmic compression. 

ALTERNATIVE APPROACHES 

A detailed discussion of run-length coding is presented by Capon (ref. 8). 
Compaction techniques are examined by Cherry (ref. 9),  Gouriet (ref. lo),  
as well a s  Becker and Lawton (ref. 11). A comprehensive analysis of Redundancy 
Reductinn is presented by Gardenhire (ref. 12). A critical evaluation and comparison 
with these investigations is not attempted at this time. 
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